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I.  INTRODUCTION 

The 105mm M774 is a high velocity, long 1/d, fin stabilized projectile. 
During recent test firings, the stabilizing fins were found to be significant- 
ly reduced in span due to aerodynamic heating. The reduction in span resulted 
in loss of flight stability for ranges greater than 2.5 km. These test fir- 
ings were conducted for rounds which were temperature conditioned to 336. K. 

This brief computational study was carried out in order to examine the in- 
depth temperature response of the fin to aerodynamic heating for launch condi- 
tions which resulted in significant erosion of the fins. A series of computa- 
tions has been carried out for fin geometries in which the fin is modeled as 
a planar two-dimensional shape. The modeling includes the effect of the 
.0635mm thick aluminum oxide hard coat which is used to provide protection 
from aerodynamic heating. The effect of small changes in fin sweep angle and 
fin thickness are examined. An additional series of computations is reported 
in which the fin is modeled as a one-dimensional slab to examine the tempera- 
ture response of the fin within the gun bore. 

The results of the computations are presented as plots of the in-depth 
temperature at specific times in the flight trajectory and as temperature 
versus time for specific locations on and within the fin. By comparing the 
results for the current and modified fin geometries, the relative effect of 
the modifications on the range of the projectile is then determined. A recom- 
mendation is made for modification of the fin geometry. Recommendations are 
also made to achieve a capability for modeling the swept fin as a three- 
dimensional shape. 

II.  COMPUTATIONAL TECHNIQUES 

A.  In-FIight Modeling 

1. Heat Transfer Coefficient. 

The effect of the aerodynamic heating applied to the fin may be repre- 
sented by a function of a heat transfer coefficient and recovery temperature 
which are functions of space and time. These parameters, which may be deter- 
mined independent of the heat conduction within the fin by application of a 
cold-wall heat transfer boundary condition at the surface of the fin, are cal- 
culated using the ASCC-79 code as modified for planar shapes.1 The velocity- 
time relationship of the M774 projectile used for input to the ASCC-79 code is 
shown in Figure 1. 

Local heat transfer coefficients and recovery temperatures were determined 
for combinations of parameters listed in Table 1. The parameters of greatest 
interest are  the fin sweep angle and the fin thickness. 

7. Suehsland,   K.E.,   "Aerothermal Assessment  of Projectiles Using the ABRES 
Shape Change Code (ASCC)J" Acurex Report TM-80-31-AS,  June 1980. 



TABLE 1. SWEPT FIN GEOMETRIES CONSIDERED IN STUDY 

Thickness Sweep Angle Coating Thickness 
mm Degrees           mm  

1.90 68.8 0.0635 
2.03 71.0 0.127 
2.16 75.0 0.0 

80.0 

2. Heat Conduction. 

The in-depth, unsteady temperature response has been calculated using 
a code (GENDR0P) which solves the two-dimensional, unsteady heat conduction 
equation with a fully implicit finite-difference computational technique. The 
code was developed by Dwyer.2 The code is formulated in generalized coordi- 
nates which facilitates computations for arbitrary geometries. 

A drawing depicting the M774 fin simplified geometry is shown in 
Figure 2. The fin geometry has been modeled as a thin flat plate with a lead- 
ing edge radius equal to the half thickness of the plate. The computational 
grid is shown in Figure 3. The computations were carried out with a grid con- 
sisting of 10 points across the hardcoat layer and 30 points across the half 
thickness of the fin. Forty grid points were spaced in the longitudinal 
direction. 

The boundary conditions are indicated below: 

at time = 0; Temp = 336. K 

at outer boundary 

n (Haw " Hwall) = -MdT/dn) 

at inner boundary 

dT/dn = 0; symmetry condition 

at material interface 

-k(dT/dn) = -k(dT/dn)b 

at downstream side 

-k(dT/d£) = 0;  symmetry condition 

2.    Dtiyer,   H.A.,  Kee,   R.J.,  and Sanders,  B.R.,   "Adaptive Grid Method for 
Problems in Fluid Mechanics and Heat Transfer," AI A A Journal,   Vol.  18, 
No.  10,   October 1980,   pp.  1205-1212. 
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The material interface was coupled by requiring equal heat flux from 
both materials at the junction. The parameters for the computations and the 
identification of the cases run are summarized in Table 2. The physical 
properties of the materials used for this study are listed in Table 3, except 
as noted in Table 2. 

TABLE 2.  TWO-DIMENSIONAL COMPUTATIONAL MODELING PARAMETERS 

Case 
ID 

Initial 
Temp, K 

Fin 
Thickness, 

mm 

Sweep 
Angle, 
degrees 

68.8 

Coating 
Thickness, 

mm 

Fin 
Material 

1 336. 2.03 .0635 Al 
2 336. 2.03 71 .0635 Al 
3 336. 2.03 75 .0635 Al 

4 336. 2.03 80 .0635 Al 

5 336. 1.90 68.8 .0635 Al 

6 336. 2.16 68.8 .0635 Al 

7 336. 2.03 71 .127 Al 

8 336. 2.03 68.8 0.0 Steel 

9 336. 2.03 68.8 0.0 Al 

10 336. 2.03 71 .0635* Al 

♦Density of coating ■ 4000. kg/m3 

TABLE 3.  SWEPT FIN PHYSICAL PROPERTIES 

Property/Material Coating Aluminum 

Specific Heat 
J/kg - K 794. 869. 

Thermal Conductivity 
W/m - K 30.6 43.4 

Density 
kg/m3 1850. 2800 

In-Bore Modeling 

The in-depth, unsteady heat conduction for the fin inside the gun tube has 
been modeled using a fully implicit one-dimensional finite-difference computa- 

11 



tional technique. The computations were carried out assuming a flame tempera- 
ture of 3050 K and residence time within the gun tube of ten milliseconds. 
The boundary condition at the outer surface was determined using the relation: 

h (3050 - Tw) = -k(dT/dx). 

Results have been obtained for a wide range of the heat transfer coeffi- 
cient, h, to examine the effect of the uncertainty in this parameter for the 
in-bore flow. The boundary condition at the midpoint of the fin was the 
adiabatic condition. The interface between the two materials was modeled by 
requiring the heat flux to be the same on both sides of the junction. The 
computational grid consisted of 10 points within the hardcoat layer and 30 
points in the half thickness of the fin. 

The identification of the computer runs and parameters of interest are 
summarized in Table 4. 

TABLE 4.  ONE-DIMENSIONAL COMPUTATIONAL MODELING PARAMETERS 

Case 
ID h Mat'Is 

Coating 
Thickness 

Time 
Step 

Initial 
Temp, K 

A 5.72 2 .0635 .0001 336 

B .572 2 .0635 .0001 336 

C .0572 2 .0635 .0001 336 

D 5.72 1 .0 .0001 336 

S 57.2 2 .0635 .0001 336 

T 5.72 

h, kW/m2 - K 
Coating Thickness, 
Time Step, seconds 

2 

mm 

.127 .0001 336 

III.  COMPUTATIONAL RESULTS 

A.  In-Flight Modeling 

1. Heat Transfer Boundary Condition. 

The results for the surface boundary condition obtained using the code 
ASCC-79 are illustrated in Figures 4 through 6. The result shown in Figure 4 
compares the cold wall heat transfer coefficient along the fin surface at 
several times in the trajectory for the basic M774 fin geometry. The distance 
along the fin surface, s,has been nondimensionalized by fifty times the lead- 
ing edge radius, L.  This figure indicates that there is a significant change 
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in the heat flux both as a function of time and position on the fin surface 
and serves to emphasize the importance of modeling the two-dimensional geome- 
try of the fin and the velocity-time decay for the projectile. 

The effect of the sweep angle on the heat transfer coefficient is 
shown in Figure 5. It is seen that the stagnation point heat flux is strongly 
affected by the sweep angle. A similar comparison for the effect of fin 
thickness is shown in Figure 6 which shows that small changes in fin thickness 
have little effect on the local heat flux. 

These heat transfer rates are for a completely laminar boundary layer. 
Estimates for the location of boundary layer transition confirmed this to be 
valid. 

The effect of the cold wall boundary condition was tested by comparing 
predicted values of local heat transfer coefficient for several values of wall 
temperature. The results indicated that the heat transfer coefficient and the 
recovery temperature are not strongly affected by the wall temperature and 
confirm the validity of the boundary condition used for the computations of 
heat conduction. 

2. Unsteady Heat Conduction. 

Results for the in-depth unsteady heat conduction for the fin during 
flight are shown in Figures 7 through 14. Comparisons are shown for the vari- 
ation of temperature versus time at a single location and for profiles of 
temperature versus position at specific times in the flight. 

The variation of the leading edge coating-metal interface temperature 
versus flight time for several sweep angles is shown in Figure 7. The sweep 
angle is seen to have a significant effect on the temperature at this 
position. 

The computed results can be evaluated in light of the firing tests by 
choosing the leading edge temperature reached by the result for case 1 at a 
distance of 2.5 km (time = 1.7 sec.) as a reference point. This is a conser- 
vative choice since the M774 was flying well at that distance. The results 
suggest that, for a sweep angle of 75° or greater, the fin will have suffi- 
cient span to support stable flight for a range greater than 3 km. 

The variation of the surface temperature at position P2, located nine 
leading edge radii from the leading edge (see Figure 3), as a function of the 
fin sweep angle is shown in Figure 8. This result is similar to that shown in 
Figure 7. The effect of fin thickness is illustrated in Figure 9. Small 
changes in the fin thickness are seen to have relatively little effect on the 
temperature response of the fin. Likewise, the coating thickness is shown in 
Figure 10 to have little effect on the temperature response at the leading 
edge coating-metal interface. A comparison of coated and uncoated fins is 
shown in Figure 11. This result predicts little effect of the coating on the 
temperature response of the fin which seems to be contrary to previous 
experience. 

13 



Figure 12 illustrates the effect of variation in the density of the 
coating on the stagnation point temperature. This result suggests that the 
density (porosity) of the coating can have a significant effect. 

An example of the temperature profile across the fin at a specific 
time in the trajectory is shown in Figure 13. The temperature difference from 
the outer surface to the midpoint of the fin is seen to be about 5. K at .5 
second decreasing to less than 2. K at 2 seconds which emphasizes the high 
heat conductivity of aluminum. This is further illustrated in Figure 14 where 
temperature contour plots are shown for specific times in the trajectory for 
case 1. 

An alternative to using aluminum for the fin material is steel. 
Figure 15 shows a comparison of the leading edge temperature as a function of 
time in the trajectory between steel (case 8) and aluminum (case 1) fins. The 
result indicates very little change in the temperature of the fin at this 
position; however, since steel has a much higher melting temperature than 
aluminum, the steel fin has a considerable margin of safety. The effect of 
the different physical properties of the two metals is evidenced at positions 
away from the leading edge (not shown) where differences in temperature across 
the fin thickness of 10. K were observed. 

B.  In-Bore Modeling 

Examples of the results of the one-dimensional modeling of the heat trans- 
fer from the propel lant gases inside the gun tube to the fin are shown in 
Figures 16, 17, and 18. A comparison is shown in Figure 16 of the temperature 
profiles across the fin after ten milliseconds of heating for several heat 
transfer coefficients. The temperatures within the fin are seen to be sensi- 
tive to this parameter, with the temperature rise across the aluminum varying 
from less than one degree Kevlin for case C to 40 K for case A. The value of 
heat transfer coefficient used for case A is representative of that used for 
prediction of boiler tube heat transfer and may be thought of as an order of 
magnitude estimate of h for a gun tube. Further refinement of this estimate 
is needed, and work is currently progressing in this direction. 

A comparison is shown in Figure 17 between results for two coating thick- 
nesses and a result for an uncoated fin. The thicker coating is seen to have 
very little effect on the temperature rise within the metal fin. The final 
example, Figure 18, shows the temperature rise at the surface of the fin as a 
function of time for case A. 

IV.  DISCUSSION AND CONCLUSIONS 

The computed results have been evaluated in light of the firing tests by 
choosing the leading edge temperature reached by the result for in-flight case 
1 at a distance of 2.5 km (time ■ 1.7 sec.) as a reference point. An estimate 
has been made of the thermal response of the fin for a modified fin geometry 
by determining the time for the modified fin to reach this same temperature. 
This is a conservative choice since the M774 was flying at small angle of yaw 
at that distance. This time has further been related to a change in range 

14 



using the trajectory plotted in Figure 1.  The result of this analysis is 
summarized in Table 5 below. 

TABLE 5.  RELATIVE EFFECT OF FIN GEOMETRY MODIFICATIONS 

Parameter Changed Change Effect on Range, dR 

Sweep angle              68.8 - 71° .44 km 

Sweep angle              68.8 - 75° > .5 km 

Sweep angle               68.8 - 80° » .5 km 

Fin thickness 2.03 - 2.16 mm .28 km 

Fin thickness 2.03 - 1.9 mm - .28 km 

Coating thickness .0635 - .127 mm .08 km 

Coating thickness .0635 - 0.0 mm 0 km 

These estimates clearly show that changing the sweep angle of the fin 
strongly influences the aerodynamic heating to the fin. 

The conclusions reached after considering the results of this computation- 
al study are summarized below. 

1. The effect of the aerodynamic heating can be significantly 
reduced by increasing the sweep angle of the fin by a few 
degrees. 

2. The density (porosity) of the coating is a significant factor in 
the thermal response of the fin. 

3. A small change in the thickness of the coating does not have a 
significant effect on the thermal response of the fin. 

4. A small change in the thickness of the fin has a small effect on 
the fin thermal response. 

5. A fin made of steel allows for a considerable margin of safety 
with respect to effects of aerodynamic heating. 

15 
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Figure 14.    Temperature Contour Plots at Time = 0.5, 1.0,  1.5, 2.0 Seconds,   In-Flight Case 1 
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